
Mécanique des fluides
Section de génie civil

TD 8 - Correction

Exercices

Exercice 1 Un canal de section rectangulaire et de pente constante (0,5%)
est divisé en deux parties de 1 km de longueur chacune, et il se termine par
un seuil de 1 m de hauteur. Dans la première partie, la largeur du canal est
de 10 m et le lit est fait de graviers grossiers (d90 = 10 cm). Dans la seconde
partie, la largeur est de 5 m et le lit est fait de graviers plus fins (d90 = 1
cm). Voir figure 1. Tracez l’allure de la courbe de remous. Le débit étant
Q = 20 m3 s−1.

1.0 m

d90=0.1

d90=0.01
5.0 m

10.0 m

i = 0.005

vue de dessus

vue de côté

1.0 km

1.0 km

Figure 1 – schéma des deux biefs.

1. Donnez la hauteur critique pour chaque partie.

2. Donnez la hauteur normale pour chaque partie (le canal n’est pas
supposé infiniment large).

3. Quel est la hauteur d’eau juste à l’amont du seuil ?

4. Quels régimes d’écoulement peut on observer? Y a-t-il un ressaut
hydraulique ?
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5. Tracez l’allure de la courbe de remous, ainsi que les hauteurs cri-
tiques et normales.

Exercice 2 Un petit canal agricole de section rectangulaire et largeur b1 =
1 m, a une porte verticale avec une ouverture a pour contrôler l’écoulement
sortant (µ = 0,6). Le débit est usuellement déterminé par un rétrécissement
de largeur b2 = 0,3 m et de hauteur hs = 0,2 m. Le débit mesuré est Q = 0,25
m3/s et vous savez que l’écoulement est subcritique sur la section (1) (voir
figure 2). Quelles sont les hauteurs dans les sections (1) à (5) de manière à
ce que les hauteurs (4) et (5) soient conjuguées ? Quelle est l’ouverture pour
cette condition?

Hypothèses :
— à l’aval de la porte verticale, il n’y a pas de contrôle hydraulique sur

l’écoulement ;
— les pertes de charge sont négligeables.

(1) (2) (3) (4) (5)

b1 b2 b1

hs a,μ

Q

Figure 2 – coupe transversale et profil en long du canal agricole

Exercice 3 : rétrécissement d’un canal Le canal de la figure 3 (bA, iA, K) a
un pas de hauteur a où il change de pente (iB) et un changement de largeur
(bA).

1. Déterminer les hauteurs dans les sections (1) à (4), indiquées sur la
figure, en négligeant les pertes de charge singulières.

2. Classifiez et tracez qualitativement la courbe de remous, avec les
hauteurs caractéristiques des différentes parties.
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Données : Q = 0,5 m3/s, K =55 m1/3/s, iA = 0.01, iB = 0,0005 , a = 0,25 m,
bA = 1,5 m, bB = 1 m.

(1) (2) (3) (4)

a

Q

Q

bA bB

iB

iA

Figure 3 – coupe transversale et profil en long du canal.

Exercice 4 Un lac de retenue est situé derrière un barrage de hauteur h0.
Les pentes de talus sont φ = 30° par rapport à l’horizontale. Ce barrage est
percé par une buse de vidange de diamètre D sur toute sa largeur comme le
montre la coupe ci-dessous. La hauteur de plein bord est notée également
h0. Lorsque que la retenue est pleine, une vanne vidange le lac par l’inter-
médiaire de la buse. L’eau est déversée dans un canal de pente i, de largeur
ℓ, et de longueur L. Au bout du canal se trouve un seuil dont la pelle est
p. Le canal est en gravier. Pour simplifier les calculs, on négligera l’effet de
la largeur dans le calcul du rayon hydraulique (on supposera donc que la
largeur est bien plus grande que la hauteur d’eau même si ce n’est pas le
cas numériquement). Voir figure 4.

p

L

h

Figure 4 – schéma de l’aménagement étudié.

Données :
— la hauteur du barrage est h0 = 10 m ;
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— la granulométrie du gravier du canal est d90 = 20 mm ;
— le diamètre de la buse est D = 0,5 m;
— les longueur et largeur du canal sont respectivement L = 1000 m et

ℓ = 5 m ;
— la pelle vaut p = 1 m et le seuil est dénoyé ;
— la pente du canal est i = 0,1 %.

1. Calculez la force de pression totale par unité de largeur qui s’exerce
sur la face amont du barrage lorsque la retenue est pleine d’eau.
Faites l’application numérique.

2. En vous servant de la formule de Torricelli en déduire le débit tran-
sitant par la buse.

3. En supposant que le jet à la sortie de la buse occupe immédiatement
toute la largeur du canal et que la vitesse reste identique, calculez la
hauteur d’eau juste en aval de la buse ?

4. Calculez le coefficient de Manning-Strickler en vous servant de la
formule de Jäggi. Pour la suite des calculs, on arrondira la valeur de
K à la valeur entière la plus proche.

5. Calculez la hauteur normale dans le canal en considérant une loi
de Manning-Strikler pour la résistance du lit (avec la valeur de K
trouvée précédemment).

6. Calculez la hauteur critique dans le canal.

7. Quel est le régime d’écoulement une fois que l’eau a atteint un ré-
gime permanent uniforme ?

8. En négligeant toute dissipation d’énergie en amont du seuil, calculez
la charge spécifique au niveau du seuil.

9. En déduire la hauteur d’eau juste à l’amont du seuil.

10. Tracez qualitativement la ligne d’eau (courbe de remous) en la pla-
çant correctement par rapport aux grandeurs caractéristiques. Com-
mentez le graphique avec les caractéristiques essentielles de la ligne
d’eau.
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Corrections

Exercice 1 Question (a)

Notons par les indices I et II, les variables correspondantes à la première
partie (largeur de 10 m) et à la seconde partie du canal (largeur de 5 m)
respectivement.

Le raisonnement est analogue à la Question (a) de l’exercice 3. Nous consi-
dérons un canal rectangulaire avec un débit constant Q = qB = 20 m3/s.
D’où :

hc =
(

(Q/B)2

g

)1/3

,
hc,I =

(
(Q/BI )2

g

)1/3

=
(

(20/10)2

9,81

)1/3

= 0,74 m ;

hc,II =
(

(Q/BII )2

g

)1/3

=
(

(20/5)2

g

)1/3

= 1,18 m .

Question (b) La hauteur normale est la profondeur moyenne d’eau en ré-
gime permanent uniforme. Le canal n’est pas supposé infiniment large, la
hauteur normale se calcule donc par l’intermédiaire de la loi de Manning-
Strickler.

Q = KR2/3
H

√
iS,

où :
— K : la résistance à l’écoulement qui dépend de la taille des grains.

Cette résistance peut être déduite de la formule de Jäggi, pour chaque
partie du canal.

K =
23,2

d1/6
90

,


KI =

23,2
d90,I I1/6

=
23,2

0,11/6
= 34,1 m1/3/s ;

KII =
23,2

d1/6
90,II

=
23,2

0,011/6
= 50 m1/3/s .

— RH : le rayon hydraulique tel que RH =
S
χ

. Dans le cas d’un canal

rectangulaire, on a :

S = Bhn =
{

SI = BIhn,I ;
SII = BIIhn,II .

χ = B+ 2hn =
{

χI = BI + 2hn,I ;
χII = BII + 2hn,II .
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En appliquant la loi de Manning-Strickler, on obtient une équation impli-
cite pour hn :

Q −K
(

Bhn
B+ 2hn

)2/3√
iBhn = 0,

Q(B+ 2hn)2/3 −K(Bhn)5/3
√
i = 0,

f (hn) = 0.

Résoudre cette dernière équation est bien trop fastidieuse à la main. Nous
utiliserons l’arlgorithme de Newton-Raphson qui nous donne une valeur
approchée de la solution par processus d’itération. La méthode est la sui-
vante :

— On fixe une valeur initiale et cohérente de la solution. Dans notre
cas, nous prenons la hauteur normale d’un canal supposé infiniment
large, c’est-à-dire :

hn(0) =
(
Q/B

K
√
i

)3/5

=


hn(0)I =

(
20/10

34,1
√

0,005

)3/5

= 0,89 m ;

hn(0)II =
(

20/5

50
√

0,005

)3/5

= 1,08 m

— On calcule hn(i + 1) à partir de hn(i) grâce à la formule suivante :

hn(i + 1) = hn(i)−
f (hn(i))
f ′(hn(i))

,

jusqu’à convergence de la solution. On prendra comme critère d’ar-
rêt :

| hn(i + 1)− hn(i) |< tol

où tol représente la tolérance de convergence de notre solution hn(i+
1) ;

— f (hn) = Q(B+ 2hn)2/3 −K(Bhn)5/3
√
i ;

— f ′(hn) = Q 4
3 (B+ 2hn)−1/3 −K 5

3B(Bhn)2/3
√
i.

Cet algorithme peut être implémenté sur Matlab de la façon suivante :

c l e a r a l l
c l o s e a l l
c l c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Methode de Newton=Raphson

%
%

%
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% hn_ ( i +1) = hn_ ( i ) = f ( hn_ ( i ) ) / f ’ ( hn_ ( i ) )
%

%
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Tolerance de convergence %%
t o l =1e=3;

%% Parametres du probleme %%
Q=20;
i_p =0.005; %pente

B=10; %p a r t i e I
%B=5; %p a r t i e I I

K=34.1 ; %p a r t i e I
%K=50; %p a r t i e I I

%% Conditions i n i t i a l e s %%
hn = [ ] ;

i =1; %i t e r a t i o n s

hn ( i )=0 ; %on d e f i n i t une valeur nul le pour evaluer
%abs ( hn ( i +1)=hn ( i )) > t o l

hn ( i +1)=((Q/B ) / (K∗ i_p ^ 0 . 5 ) ) ^ ( 3 / 5 ) ; %valeur i n i t i a l e

%% Boucle jusqu ’ a convergence de l a s o l u t i o n %%
while abs ( hn ( i +1)=hn ( i )) > t o l

%% I t e r a t i o n suivante %%
i f ( hn ( i )==0)
i =2;
e l s e
i=i +1;
end

%% Methode d ’ evaluat ion %%
f=Q∗ ( B+2∗hn ( i ))^(2/3)=K∗ ( i_p ^ 0 . 5 ) ∗ ( B∗hn ( i ) ) ^ ( 5 / 3 ) ;

%fonct ion : f
fp=Q∗ ( 4 / 3 ) ∗ ( B+2∗hn ( i ))^(=1/3)=K∗ ( 5 / 3 ) ∗ ( i_p ^0 .5 )∗B∗

(B∗hn ( i ) ) ^ ( 2 / 3 ) ; %der ivee : f ’
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hn ( i +1)=hn ( i )= f / fp ;

end

Finalement, on trouve la hauteur normale pour chaque partie du canal :{
hn,I = 0,96 m ;
hn,II = 1,27 m.

Question (c) On utilise la même procédure que dans la question (b) de
l’exercice 3. La charge totale se conservant entre l’amont et le seuil, on doit
avoir une diminution de la charge spécifique correspondant à la hauteur
du seuil ys − ya = 1 m car :

Ha = Hs,

ya + ha +
u2
a

2g
= Hs,

ha +

(
Q

BIIha

)2

2g
= Hs.

Or la hauteur d’eau au niveau du seuil correspond à la hauteur critique,
c’est-à-dire hs = hc,II = 1,18 m. Donc

Hs = (ys − ya) + hs +

(
Q

BIIhs

)2

2g
= 1 + 1,18 +

( 20
5× 1,18

)2

2× 9,81
= 2,765 m.

On résout l’équation f (ha) = 0 à l’aide de la méthode de Newton-Raphson
telle que :

f (ha) = h3
a +

(
Q
BII

)2

2g
−Hsh

2
a ,

f ′(ha) = 3h2
a − 2Hsha.

On fixe comme valeur initiale :

ha(0) = Hs = 2,765 m.

c l e a r a l l
c l o s e a l l
c l c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Methode de Newton=Raphson
%

%
%

% ha_ ( i +1) = ha_ ( i ) = f ( ha_ ( i ) ) / f ’ ( ha_ ( i ) )
%

%
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Tolerance de convergence %%
t o l =1e=3;

%% Parametres du probleme %%
Q=20;
B=5;
g =9.81;
hc =1.18;
y=1; %hauteur du s e u i l : ys=ya
Hs=y+hc +( (Q/(B∗hc ) ) ^ 2 ) / ( 2 ∗ g ) ;

%% Conditions i n i t i a l e s %%
ha = [ ] ;

i =1; %i t e r a t i o n s

ha ( i )=0 ; %on d e f i n i t une valeur nul le pour evaluer
%abs ( ha ( i +1)=ha ( i )) > t o l

ha ( i +1)=Hs ; %valeur i n i t i a l e

%% Boucle jusqu ’ a convergence de l a s o l u t i o n %%
while abs ( ha ( i +1)=ha ( i )) > t o l

%% I t e r a t i o n suivante %%
i f ( ha ( i )==0)
i =2;
e l s e
i=i +1;
end

%% Methode d ’ evaluat ion %%
f=ha ( i )^3+((Q/B) ^ 2 ) / ( 2 ∗ g)=Hs∗ha ( i ) ^ 2 ;

%fonct ion : f
fp=3∗ha ( i )^2=2∗Hs∗ha ( i ) ;
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%derivee : f ’

ha ( i +1)=ha ( i )= f / fp ;

end

Finalement, la hauteur d’eau à l’amont du seuil est ha = 2,65 m.

Question (d) Pour rappel, on observe :
— un régime subcritique plus couramment appelé régime fluvial lorsque

h > hc ;
— un régime supercritique plus couramment appelé régime torrentiel

lorsque h < hc.
Comme :

— hn,I = 0,96 > hc,I = 0,74, l’écoulement est en régime subcritique dans
la première partie du canal ;

— hn,II = 1,27 > hc,II = 1,18, l’écoulement est en régime subcritique
dans la deuxième partie du canal ;

Question (e)

Figure 5 – courbe de remous.
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Exercice 2 Question (a)

Dans un premier temps calculons le débit par unité de largeur dans cha-
cune des sections, le débit Q = 0,25 m3/s étant constant. Il est à noter que
les sections (1), (2), (4) et (5) ont une largeur identique égale à b1 = 1 m. La
section (3) a une largeur b2 = 0,3 m. On a donc :

q1 = q2 = q4 = q5 =
Q
b1

= 0,25 m2/s,

q3 =
Q
b2

= 0,833 m2/s.

Les hauteurs dans les sections (4) et (5) sont dites conjuguées dès lors
qu’elles vérifient la formule de conjugaison :

h5

h4
=

1
2

(√
1 + 8F2

r4 − 1
)
, (1)

où :

Fr4 =
u4√
gh4

=
√
b1Q√
gS3/2

.

Pour connaître les hauteurs d’eau dans la section (5), il est nécessaire de
calculer la hauteur d’eau dans la section (4). Pour cela, nous utilisons la
conservation de la charge totale entre les sections (3) et (4), ainsi qu’entre
les sections (2) et (3) pour connaître la hauteur h2.

u3
2

2g
+ h3 + hs =

u2
2

2g
+ h2 + 0

u3
2

2g
+ h3 + hs =

u4
2

2g
+ h4 + 0,


q2

3

2gh2
3

+ h3 + hs =
q2

2

2gh2
2

+ h2 + 0

q2
3

2gh2
3

+ h3 + hs =
q2

4

2gh2
4

+ h4 + 0.

Tout d’abord, la hauteur d’eau dans (3) correspond à la hauteur critique.
En effet, à l’amont, le régime est subcritique et la hauteur d’eau correspond
à la hauteur normale. Dans cette configuration, il y a trois possibilités pour
la hauteur d’eau dans la section (3) :

— la hauteur d’eau reste normale ;
— la hauteur augmente car elle dépend des conditions imposées à l’aval ;
— la hauteur d’eau diminue en générant une chute d’eau, permettant

ainsi une transition vers un régime supercritique.
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Comme la porte verticale contrôle l’écoulement en amont de celle-ci, et
qu’il y a un ressaut entre (4) et (5), la hauteur d’eau dans la section (4)
doit être inférieure à hc. C’est donc la troisième condition qui est retenu ;
la hauteur d’eau dans la section (3) correspond donc à la hauteur critique.
Ainsi :

h3 = hc3 =
(
q2

3
g

)1/3

= 0,414 m.

Les hauteurs d’eau h2 et h3 vérifient donc :

q2
2/4

2gh2
2/4

+ h2/4 = 0,82 m,

La résolution de cette équation donne deux solutions : 0,065 m et 0,816 m.
La hauteur h2 est contrôlée par l’écoulement en (1), qui est sub-critique. La
hauteur h4 est conjuguée à la hauteur h5 qui est fixée par la porte verticale.
La section (4) est donc en régime super-critique. On en déduit que :{

h2 = 0,816 m,
h4 = 0,065 m.

On suppose que les pertes de charges sont négligeables de sorte que h1 =
h2 = 0,816 m. En injectant la solution obtenue pour h4 dans l’équation 1,
on obtient h5 = 0,412 m.

Question (b) Pour connaître l’ouverture a dans cette condition, il faut cal-
culer la hauteur d’eau notée hµa au niveau de l’ouverture. On suppose qu’il
y a conservation de la charge entre les section (5) et (µa) :

u5
2

2g
+ h5 + 0 =

uµa
2

2g
+ hµa + 0

q2
5

2gh2
5

+ h5 =
q2
µa

2gh2
µa

+ hµa.

Cette équation nous donne deux solution pour hµa égales à 0,097 m et 0,412
m. Comme cette hauteur d’eau est inférieure à celle dans la section (5),
on a forcément hµa = 0,097 m. Au niveau d’une porte verticale, le flux se
contracte de sorte que la hauteur du flux hµa est égale à µa. Ainsi :

a =
hµa
µ

= 0,167 m.
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Exercice 3 Question (a) Dans un premier temps, nous calculons les hau-
teurs critiques hcA et hcB dans les sections de largeur bA et bB respective-
ment : 

hcA =

 Q2

gb2
A

1/3

= 0,225 m,

hcB =
(
Q2

gb2
B

)1/3

= 0,294 m.

Trois hauteurs normales vont être observées dans ce canal ; le changement
de ces hauteurs normales est dû soit à un changement de pente, soit à un
changement de largeur. Pour déterminer la première hauteur normale dans
la section correspondant à une largeur bA et à une pente iA, on utilise la loi
de Manning-Strickler :

Q = K
√
iASAR

2/3
HA,

Q = K
√
iA

(bAhnA)5/3

(bA + 2hnA)2/3
.

Note : quand on a une simple calculatrice, cette équation peut se résoudre
soit par la méthode de Newton-Raphson, soit par calculatrice en isolant
hnA. Si on a besoin d’une valeur initiale pour commencer le calcul itératif,
on peut prendre la hauteur dans le cas d’un canal infiniment large :

h0
nA =

(
Q

bAK
√
iA

)3/5

= 0,186 m.

On trouve hnA = 0,205 m < hcA. L’écoulement dans la section (1) est donc
supercritique.

La hauteur normale dans la section de largeur bA et de pente iB, notée hn2/3
est déterminée sur la base du même raisonnement que précédemment. On
trouve alors hn2/3 = 0,573 m > hcA = 0,225 m. L’écoulement entre les sec-
tions (2) et (3) est donc subcritique.

De même pour la hauteur normale dans la section de largeur bB et de pente
iB, notée hnB, on trouve hnB = 0,873 m > hcB = 0,294. L’écoulement est donc
sub-critique dans cette partie du canal.

De cette manière, les hauteurs d’eau dans les sections (1) et (4) sont direc-
tement déterminées par les hauteurs normales dans les sections correspon-
dantes, c’est-à-dire : {

h1 = hnA = 0,205 m,
h4 = hnB = 0,873 m.

13



Question (b) Cette question nécessite un peu de réflexion. La question qui
se pose est de savoir s’il y un ressaut hydraulique qui se forme entre les
deux biefs A et B ou bien la courbe de remous est continue.

Un ressaut ne se forme que si la courbe de remous h(x) coupe la hauteur cri-
tique hc. Est-ce le cas ? Examinons les éléments à notre disposition :

— On a vu que le bief A jusqu’à la section 1 est en régime supercritique
car hn < hc.

— Au niveau de la transition (1)-(2) il y a une chute d’eau. En principe
cela implique qu’on passe en critique au-dessus de la marche.

— Remarque Cela n’est vrai que si la chute n’est pas noyée, c’est-à-dire
si l’écoulement à l’aval n’influence pas l’amont (on ne voit pas les
chutes dans le cours, mais uniquement les seuils ; le principe est tou-
tefois le même pour toutes les singularités telles que seuil, chute, et
vanne : on distingue écoulements noyé et dénoyé). Pour l’instant, on
ne sait pas si la chute est noyée ou pas (et on n’a d’ailleurs pas de
formule qui permette de spécifier si cela est le cas). On suppose ici
que le marche n’est pas noyée.

— On a vu que dans le bief B, l’écoulement est subcritique hn > hc.
— Si on devait résoudre l’équation de la courbe de remous, on a un

problème différentiel où à gauche (à l’amont) l’écoulement est su-
percritique, donc la condition à la limite doit être fixée à l’amont
(qui n’est pas donnée). On suppose que cette condition est située
loin à gauche (en amont) en sorte que l’écoulement a une hauteur
proche de la hauteur normale notée hnA.

— À droite, l’écoulement est subcritique, donc la condition à la limite
est fixée par l’aval (qui n’est pas plus donnée). On suppose que cette
condition est située loin à droite (en aval) en sorte que l’écoulement
a une hauteur proche de la hauteur normale notée hnB.

— L’énoncé ne dit rien quant à la distance entre les sections 1-2 et 3-4.
On peut imaginer qu’elle est courte. Cela invite à négliger les pertes
de charge par frottement et à raisonner de façon qualitative pour
tracer la courbe de remous (sans information de distance, on ne peut
résoudre l’équation de la courbe de remous). On note qu’entre ces
deux sections l’écoulement subit des variations brutales :

— chute d’eau à la section (1-2), et
— rétrécissement brutal à la section (3-4).

Chaque singularité nécessite en principe d’évaluer la perte de charge sin-
gulière associée. Soulignons que cette absence d’informations fait qu’on ne
peut pas calculer de courbe de remous (aucune information sur la distance)
et on ne peut pas évaluer les pertes de charges singulières (ressaut éventuel,
changement de section). On déduit de ce constat que le seul outil qu’on a vu
dans le cours pour ce type de cas, c’est la méthode de la charge spécifique
Hs vue au § 5.2.1.
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Si on trace la courbe spécifique Hs(h), on peut représenter le point A qui
correspond à la charge spécifique dans le premier bief (point pour lequel
on a h = hA = 20,5 cm et Hs,A = 34 cm). Le passage de la singularité fait que
la charge spécifique croît de 25 cm, et vaut donc maintenant 59 cm.

0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6 – variations de Hs(h) et position des points caractéristiques.

L’intersection de cette valeur donne deux points possibles (voir figure 6) :
B’ (avec h = 11 cm) et B” (avec h = 57 cm). On a vu en cours qu’on ne peut
pas passer continûment d’une branche super- à subcritique (ou vice-versa).
On sait également que la section 3-4 est représentée par le point C avec une
hauteur h = h3 = 88,3 cm et Hs,3 = 89 cm). On doit aller de A à C.

La seule possibilité est d’aller de A à B’ continûment, puis d’avoir un res-
saut permettant de passer de B’ à B”, puis de nouveau continûment de B”
à C. De ce point C, on va ensuite à un point D qui représente l’entrée du
3ème bief (aval de la section 3-4), qu’on a du mal à représenter tellement il
est proche de C. La courbe en tireté représente la charge spécifique dans le
bief B (voir figure 6).

L’allure de la courbe tient compte de ces éléments (voir figure 7). Les dis-
tances entre les points sont arbitraires. La méthode permet de calculer les
hauteurs, mais non la distance à laquelle ces hauteurs sont atteintes. Ici la
méthode de la courbe de remous serait peut utile car même si on avait les
informations manquantes, le régime serait rapidement varié et les hypo-
thèses qui permettent la dérivation de ces équations seraient violées.

Exercice 4 Question (a) On va calculer la force de pression par unité
de largeur qui s’exerce sur le barrage. En considérant la pression atmo-
sphérique comme patm = 0 Pa, on peut écrire la distribution de pression
hydrostatique le long du barrage comme p = ϱg(h0 − y). On a prit le fond
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Figure 7 – schéma de principe de la courbe de remous (les distances sont
arbitraires).

du lac comme altitude 0. On sait que la force de pression totale s’exprime
comme :

F =
∫
S
−pnds

y

xdx

ds
dy

φ

Figure 8 – Incrément de surface infinitésimale sur le barrage

Étant donné la géométrie du problème (voir figure 8) on peut exprimer ds
en fonction de la hauteur du barrage comme suit : ds = l dy/ sinφ = 2l dy,
où l est la largeur (inconnue) du barrage. On veut calculer l’intensité de
force de pression qui s’exerce sur le barrage, c’est-à-dire la norme de F =
∥F ∥.

F = ∥F ∥ =
∥∥∥∥∥∫

S
−pnds

∥∥∥∥∥ =
∫
S
∥−pn∥ds =

∫
S
pds

Car ∥n∥ = 1. On peut donc écrire :

F =
∫ h0

0
ϱg(h0 − y)l dy = 2ϱgl[h0y −

1
2
y2]h0

0 = ϱglh2
0 (2)

La force de pression totale par unité de largeur est donc f = F/l = ρgh2
0.

L’application numérique donne : f = 981 kN/m

Question (b) En se servant de la formule de Torricelli, on peut évaluer la
vitesse de l’écoulement en sortie de la buse

u =
√

2gh0 = 14ms−1
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Le débit correspondant à cette vitesse est

Q = uSbuse = u
πD2

4
= 2,75m3 s−1 (3)

Question (c) Soit hsortie la hauteur de l’écoulement dans le canal juste en
aval de la buse et Ssortie = ℓhsortie la surface de l’écoulement dans le canal
juste en aval de la buse. On a supposé que l’écoulement occupe toute la
largeur du canal. La conservation du débit impose

Q = uSsortie = uℓhsortie ⇒ hsortie =
Q
uℓ

= 3,9 cm

Question (d) En appliquant la formule de Jäggi :

K =
23.2

d1/6
90

= 44,52 ≈ 45 m1/3 s−1

Question (e) Nous allons utiliser la loi de Manning-Strickler pour calculer
la hauteur normale hn, c’est-à-dire la hauteur de l’écoulement en régime
permanent et uniforme. Comme nous supposons le canal infiniment large
(ℓ≫ h), le rayon hydraulique devient :

RH =
ℓhn

ℓ + 2hn
=

hn

1 + 2hn
ℓ

≈ hn

En utilisant la loi de Manning-Strickler et u = Q/hnℓ il vient :

τp =
ϱg

K2
u2

h1/3
n

= ϱgiRH

⇒ h1/3 =
u2

K2iRH

⇒ h1/3
n =

Q2

h3
nℓ2K2i

⇒ hn =
(

Q

ℓK
√
i

)3/5

L’application numérique donne hn = 56,5 cm

Question (f) La hauteur critique du canal se calcule en considérant l’écou-
lement comme étant à nombre de Froude égal à 1. Soit

Fr = 1 =
u√
ghc

=
Q

ℓhc
√
ghc

⇒ hc = 3

√
Q2

ℓ2g
= 31,4cm
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Question (g) Lorsque l’écoulement est permanent et uniforme la hauteur
d’eau est hn (par définition). On peut donc calculer le nombre de Froude
pour cette hauteur d’eau :

Fr =
u√
ghn

=
Q

ℓh3/2
n
√
g

= 0,41

L’écoulement est en régime subcritique.

Question (h) La charge spécifique est défini comme :

Hs = h+
u2

2g
= h+

Q2

2ℓ2h2g
(4)

On fait l’hypothèse que le seuil soit suffisamment épais pour que l’écoule-
ment soit à la hauteur critique au niveau du seuil (voir les notes de cours).
La charge spécifique vaut donc Hs = 0,47 m.

Question (i) On suppose qu’il n’y a pas de dissipation d’énergie (question
8), on peut donc dire que la charge totale se conserve. La charge totale étant
défini comme :

H = Hs + p = 1,47 m

avec p la hauteur du seuil. On peut exprimer la charge totale en amont
comme une fonction de la hauteur en amont ha :

H =
Q2

2ℓ2h2
ag

+ ha

⇒ f (h) = h3
a −Hh2

a +
Q2

2ℓ2g

Afin de résoudre cette équation polynômiale du troisième ordre, on va uti-
liser la méthode de Newton. Comme indiqué dans le cours, si la vitesse est
très faible en amont du seuil on peut estimer que H ≈ ha. On va donc utili-
ser h0 = H = 1,47 m comme valeur initiale dans le calcul de la méthode de
Newton. Elle converge vers la valeur ha = 1,46 m en 5 itérations.
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Figure 9 – Courbe de remous du canal
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